Batteries

Revolutionary high performance batteries based on common/cheap materials

BroadBit Batteries Oy August 2021

Current battery tech limits market

Fossil fuel world = \sim 1 kg batteries per person Electric world = \sim 100 kg batteries per person

~80 B\$ Today

Existing batteries:

Expensive (>150 \$/kWh) Harmful (Environment & Users) Slow to charge (> 2hrs) Low capacity (< 260 Wh/kg) Delicate (0C - 40C) Resource limited (Lithium, Cobalt, Nickel) >1 T\$ 2030

BroadBit's core battery innovations Better Battery Chemistry

Evolutionary (Li-lon):

Electrolyte: Wide-temp/Hi-Volt Cathode: Co & Ni Free (TRL-8, TRL-9 2021) Revolutionary (Na-Salt): Anode, Cathode, Electrolyte: Rare Earth Metal Fee (TRL-5, TRL-9 2022)

Lower Cost, Higher Performance, Greener, Safer, More Scalable

Evolutionary: Water-based: Non-Toxic (TRL-7, TRL-9 2021) **Revolutionary: Dry:** Liquid Free (TRL-6, TRL-9 2021)

Better Battery Manufacturing

BroadBit's core battery innovations Better Battery Chemistry

Evolutionary (Li-lon):

Electrolyte: Wide-temp/Hi-Volt Cathode: Co & Ni Free (TRL-8, TRL-9 2021) Rare Earth Metal Fee (TRL-5, TRL-9 2022)

Lower Cost, Higher Performance, Greener, Safer, More Scalable

Evolutionary: Water-based: Non-Toxic (TRL-7, TRL-9 2021) **Revolutionary: Dry:** Liquid Free (TRL-6, TRL-9 2021)

Better Battery Manufacturing

BroadBit's Li-ion Innovation vs. Std. Li-ion

Novel BroadBit Electrolyte (for all Li-ion Chemistries):

- Safer (no reaction w/ water creating toxic by-products)
- 10% Higher Voltage Limit (charging up to 4.5V vs. 4.2V for std. Li-ion)
- 15°C Higher Temperature Limit (75°C vs. 60°C for std. Li-ion)
- 30% Higher Conductivity (3.2 mS/cm vs. 2.4 mS/cm for std. Li-ion)
- 2x Cycle Life (2000 cycles vs. 1000 for std. Li-ion)

Theoretically valid for ALL existing Li-ion cathodes, anodes and separators

BroadBit's Li-ion Innovation vs. Std. Li-ion

Novel BroadBit Electrolyte (for all Li-ion Chemistries):

- Safer (no reaction w/ water creating toxic by-products)
- **10% Higher Voltage Limit** (charging up to 4.5V vs. 4.2V for std. Li-ion)
- 15°C Higher Temperature Limit (75°C vs. 60°C for std. Li-ion)
- 30% Higher Conductivity (3.2 mS/cm vs. 2.4 mS/cm for std. Li-ion)
- 2x Cycle Life (2000 cycles vs. 1000 for std. Li-ion)

Novel BroadBit Cathode (for Li-ion LFP Replacement):

- 20% Higher Energy (discharge voltage 3.6V vs. 3.2V for Li-LFP)
- More scalable and sustainable (Cobalt and Nickel free)

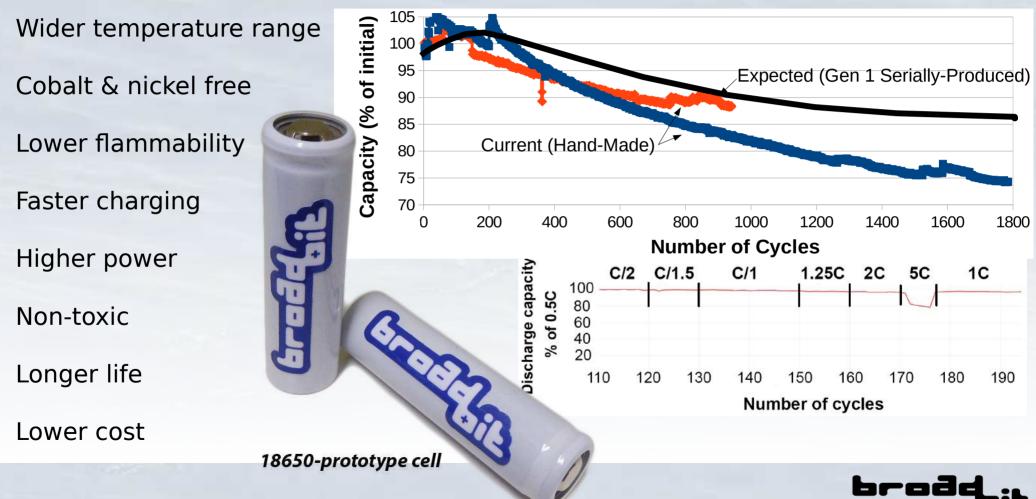
Areal mass loading (mg/cm ²)	21±5%
Areal capacity (mAh/cm ²)	2,6±5%
Recommended maximum charge voltage	4.2V vs. Li/Li+
Recommended cut-off voltage for discharge	2.5 vs. Li/Li+

BroadBit's Li-ion Innovation vs. Std. Li-ion

Novel BroadBit Electrolyte (for all Li-ion Chemistries):

- Safer (no reaction w/ water creating toxic by-products)
- **10% Higher Voltage Limit** (charging up to 4.5V vs. 4.2V for std. Li-ion)
- 15°C Higher Temperature Limit (75°C vs. 60°C for std. Li-ion)
- 30% Higher Conductivity (3.2 mS/cm vs. 2.4 mS/cm for std. Li-ion)
- 2x Cycle Life (2000 cycles vs. 1000 for std. Li-ion)

Novel BroadBit Cathode (for Li-ion LFP Replacement):


- 20% Higher Energy (discharge voltage 3.6V vs. 3.2V for Li-LFP)
- More scalable and sustainable (Cobalt and Nickel free)

Novel BroadBit Cathode + Electrolyte (for Li-ion LFP Replacement):

- Safer, More Robust, Longer Life, Higher Energy
- 10% lower cell cost / kWh, 25% lower pack cost / kWh

BroadBit's Li-ion LFP replacement chemistry

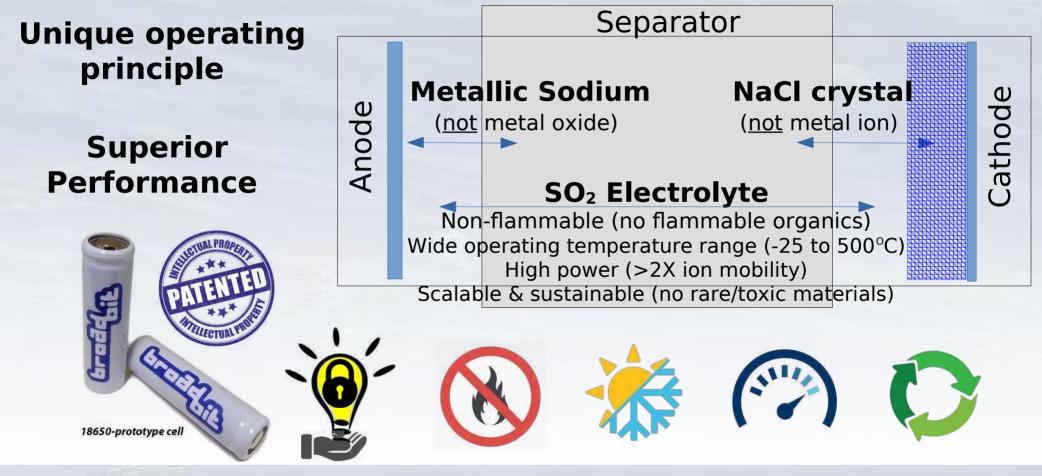
BroadBit beats the competition

КРІ	LFP Li-ion	BroadBit Li-ion (Theoretical)		
Recharge time	2 hrs to 99%	½ hr to 99% (<10 mins possible)		
Energy Capacity	<145 Wh/kg	155 Wh/kg (>175 Wh/kg possible)		
Cycle Life	2000 cycles	3000 cycles (>10000 possible)		
Temperature Range	0°C to 60°C	-20°C to 75°C (85°C possible)		
Existing LFP Li-lo	n Cost Reduc			
	10%	Materials		
70% 30%	MIT9.20			
Mat.	Mat.	Mat. Reduction		
Cost		Mfg. Reduction		
Initial: >70 \$/kWh		→ <50 \$/kWh		
Levelized: <35 \$/MWh		→ <20 \$/MWh		

BroadBit's core battery innovations Better Battery Chemistry

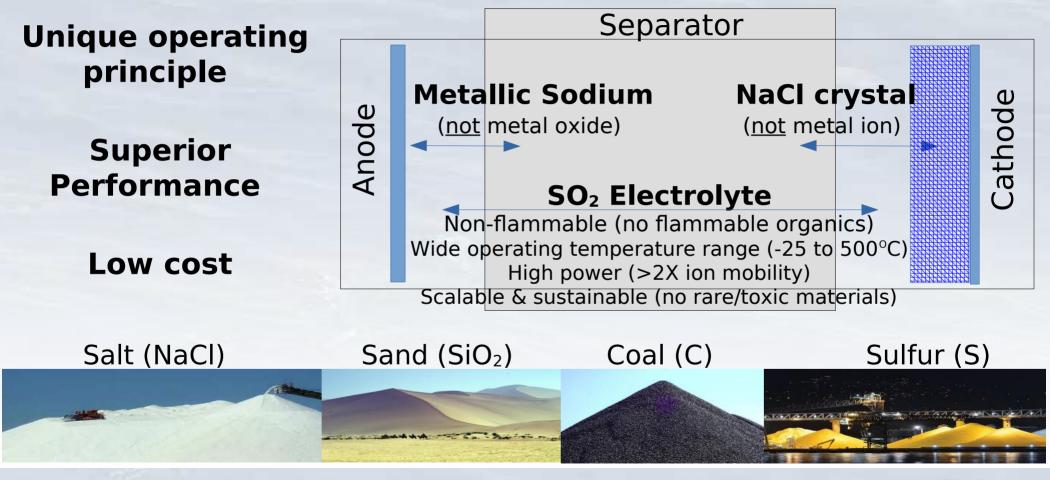
Evolutionary (Li-lon):

Electrolyte: Wide-temp/Hi-Volt Cathode: Co & Ni Free (TRL-8, TRL-9 2021) Revolutionary (Na-Salt): Anode, Cathode, Electrolyte: Rare Earth Metal Fee (TRL-5, TRL-9 2022)


Lower Cost, Higher Performance, Greener, Safer, More Scalable

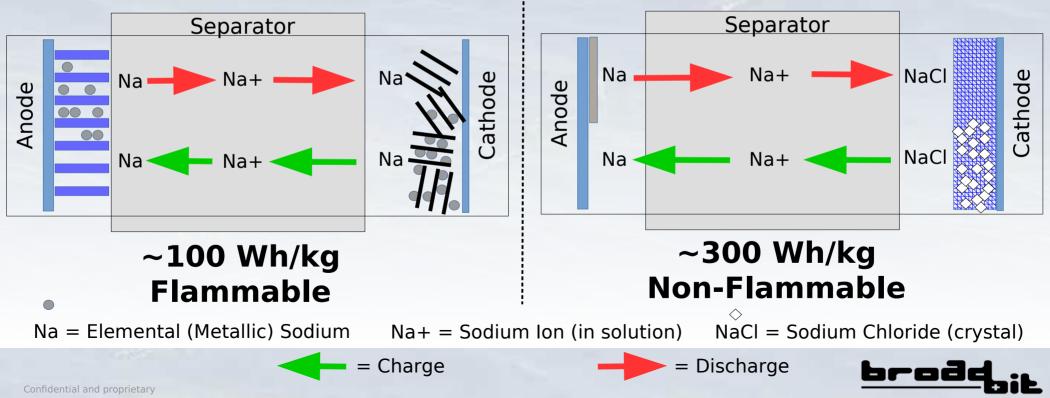
Evolutionary: Water-based: Non-Toxic (TRL-7, TRL-9 2021) **Revolutionary: Dry:** Liquid Free (TRL-6, TRL-9 2021)

Better Battery Manufacturing



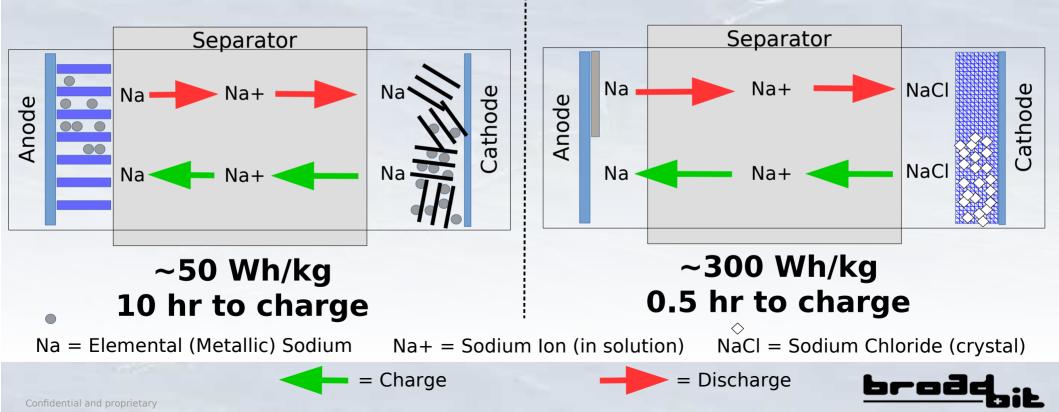
BroadBit's unique sodium technology

BroadBit's unique sodium technology



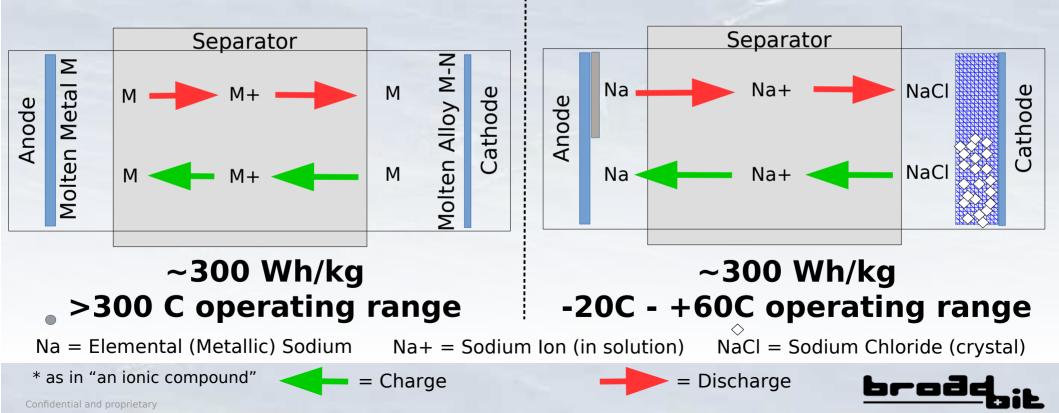
Fundamentally NOT Sodium-Ion

Sodium-ion batteries use intercalation to store charge


BroadBit uses electrodeposition & crystallization to store charge

Fundamentally NOT Saltwater

Saltwater batteries use H₂O as the electrolyte solvent


BroadBit uses SO₂ as the electrolyte solvent

Fundamentally NOT Molten Salt

Molten salt batteries use melted salt^{*} as the electrolyte

BroadBit uses table salt (NaCl) as the active material

BroadBit's core battery innovations Better Battery Chemistry

Evolutionary (Li-lon):

Electrolyte: Wide-temp/Hi-Volt Cathode: Co & Ni Free (TRL-8, TRL-9 2021) Revolutionary (Na-Salt): Anode, Cathode, Electrolyte: Rare Earth Metal Fee (TRL-5, TRL-9 2022)

Lower Cost, Higher Performance, Greener, Safer, More Scalable

Evolutionary: Water-based: Non-Toxic (TRL-7, TRL-9 2021) Revolutionary: Dry: Liquid Free (TRL-6, TRL-9 2021)

Better Battery Manufacturing

BroadBit's unique H₂O-based mfg. technology

Existing Wet (Toxic Solvent) Process BroadBit Wet (H₂O-based) Process

CapEx Cost: 3 - 15 M€ Energy Cost: 200 - 500 kW Process Material Cost: 3 - 5 €/L Factory Area: 400 - 600 m² Health, Safety & Environment: Flammable/ Toxic

<2 M€

 < 100 kW

 </l>
 0.01€/L

 300 m²
 Inert

BroadBit's core battery innovations Better Battery Chemistry

Evolutionary:

Li-ion: Cobalt and Nickel Free (TRL-8, TRL-9 2020)

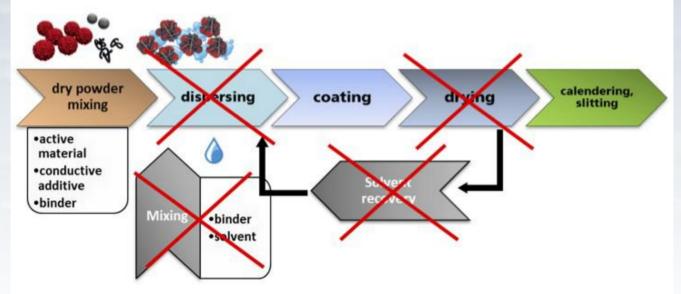
Revolutionary:

Na-salt: Rare Earth Metal Fee (TRL-5, TRL-9 2021)

Lower Cost, Higher Performance, Greener, Safer, More Scalable

Evolutionary: Water-based: Solvent Free (TRL-7, TRL-9 2021)

Revolutionary: Dry: Liquid Free (TRL-6, TRL-9 2021)


Better Battery Manufacturing

BroadBit has better manufacturing

Cheaper, faster, safer, greener, cathode production

Dry, solvent free, contamination resistant process

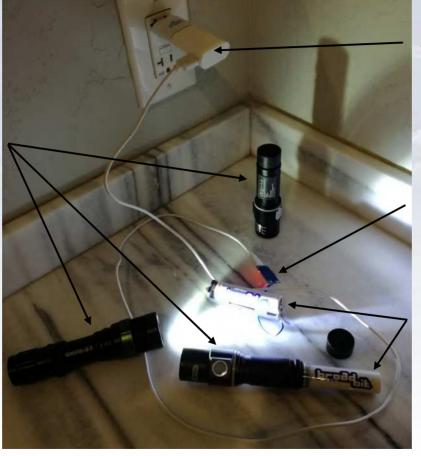
Applicable to all of BroadBit's Batteries

BroadBit's unique water-based mfg. tech

Existing Wet (Toxic Solvent) Process

CapEx Cost: 3 - 15 M€ Energy Cost: 200 - 500 kW Process Material Cost: 3 - 5 €/L Factory Area: 400 - 600 m² Health, Safety & Environment: Flammable/ Toxic

BroadBit Dry Process

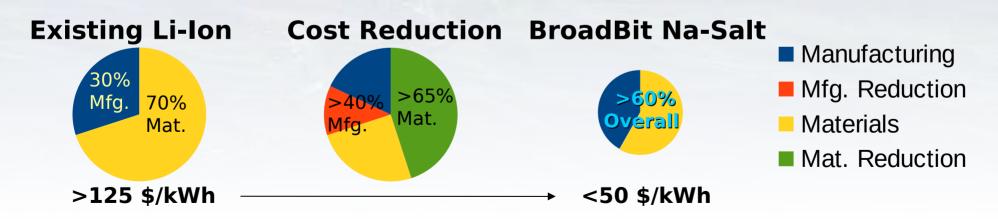


▶ 0.1 M€
 ▶ 10 kW
 ▶ 0
 ▶ 10 m²
 ▶ Inert

BroadBit is Plug-and-Replace for Li-Ion

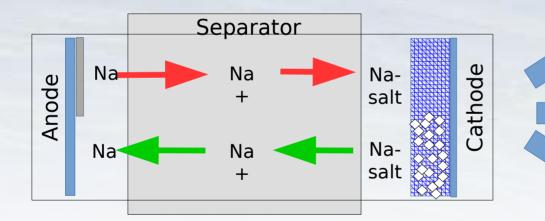
Standard devices

Standard USB power source


Standard Li-Ion charger chip

Standard cells (size, voltage, current)

BroadBit outclasses the competition


Key Parameter	Li-Ion NCA/NCM	BroadBit Na-salt (Theoretical)	
Harm: Planet/People	Flammable / Cobalt, Lithium mines	Non-flammable / No rare Earth materials	
Recharge time	2 hrs to 99%	30 mins to 99% (5 mins to 99% possible)	
Energy Capacity	260 Wh/kg	300 Wh/kg (350 Wh/kg possible)	
Temperature Range	0C to 40°C	-20C to 60°C (-30 to 95°C possible)	

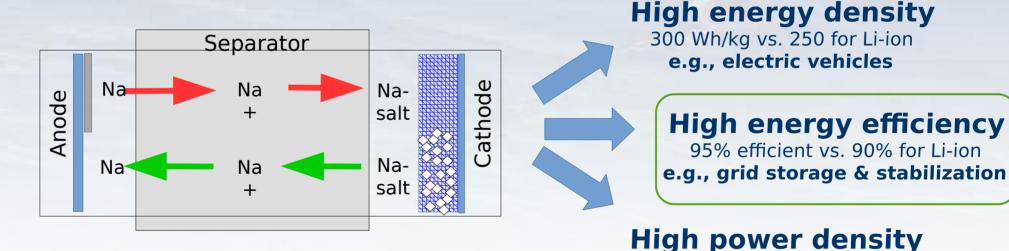
BroadBit sodium batteries are flexible

Using the same core concept, BroadBit's cell chemistry can be optimized for various applications:

High energy density

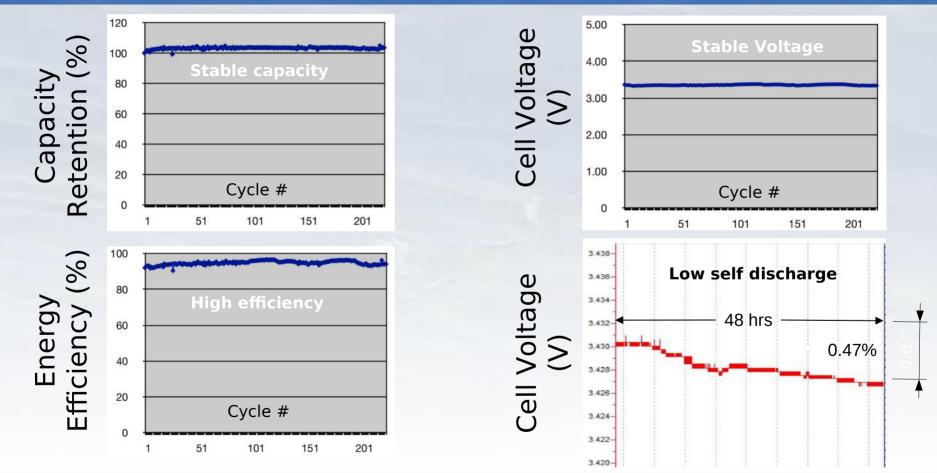
300 Wh/kg vs. 250 for Li-ion e.g., electric vehicles

High energy efficiency 95% efficient vs. 90% for Li-ion e.g., grid storage & stabilization


High power density

5-min charging vs. 30 for Li-ion e.g., starter, drones & power tools

BroadBit sodium batteries are flexible


Using the same core concept, BroadBit's cell chemistry can be optimized for various applications:

5-min charging vs. 30 for Li-ion e.g., starter, drones & power tools

BroadBit's durable/efficient chemistry

Patents Status (1/1)

#	Description	Granted (Recently), Applied in	Priority	WO, PCT Numbers (Our ID)
1 a	ELECTROCHEMICAL SECONDARY CELLS FOR HIGH-POWER BATTERY USE -High power NaCl with NaBF4 or NaBH4	FIN	2015.09.30	WO2017/055678A1, PCT/FI2016/050133 (99077LN)
1 b	ELECTROCHEMICAL SECONDARY CELLS FOR HIGH-ENERGY BATTERY USE -Discharge state assembled, high energy sodium / sodium salt	PCT, EUR, USA, JAP, KOR, CHN, CAN, ISR, RUS, BRA, IND, TWN	2015.09.30	WO2017/055678A1, PCT/FI2016/050133 (99077LN)
2	RECHARGEABLE SODIUM CELLS FOR HIGH ENERGY DENSITY BATTERY USE -Non-aqueous electrolyte, SO2 additive and SEI forming salt	FIN, PCT, EUR, USA, JAP, KOR, CHN, CAN, IND, IND, TWN, ISR, RUS , AUS, MEX, BRA, PER	2016.03.04	WO2017/149204, PCT/FI2017/050139 (99096LN)
3	ELECTROLYTE FOR SUPERCAPACITOR AND HIGH-POWER BATTERY USE -NaClO4 electrolyte in nitrile solvent	FIN, PCT, TWN, EUR, USA, JAP, KOR, CHN, IND, ISR, AUS, BRA, CAN, MEX, PER, <u>RUS</u>	2017.03.17	WO2018/167365, PCT/FI2018/050182 (105598LN)
4	IMPROVED ELECTROCHEMICAL CELLS FOR HIGH-ENERGY BATTERY USE -Anode current collector for SO2 solvent with C-coated metal/alloy	FIN, PCT, TWN, USA, EUR, JAP, KOR, CHN, IND, <u>IND</u> , <u>RUS</u> , <u>ISR</u>	2017.08.04	WO2019025663A1, PCT/FI2018/050571 (107989LN)
5	A DISCHARGE STATE ASSEMBLED RECHARGEABLE ELECTROCHEMICAL CELL COMPRIZING METALLIC ELECTRODES -Discharge state assembled metal-metal battery.	FIN, PCT, USA, EUR, JAP, KOR, CHN, IND	2018.09.17	WO2020058572A1, PCT/FI2019/050663 (114412LN)
6	IMPROVED RECHARGEABLE BATTERIES AND PRODUCTION THEREOF -Electrolyte with Carbonate – Nitrile solvent with alkali salt	FIN, PCT, USA, EUR, JAP, KOR, CHN, IND	2018.10.02	WO2020070391A1, PCT/FI2019/050714 (114723KM)
7	IMPROVED ANODE MATERIAL AND ANODE FOR A RECHARGEABLE BATTERY -Composite anode of metal matrix and distributed material	FIN, PCT, USA, EUR, JAP, KOR, CHN, IND	2018.10.10	WO2020084197A1, PCT/FI2019/050759 (114857LN)
8	AN ELECTRODE MATERIAL AND COMPONENTS THEREFROM AND PROCESSES FOR THE MANUFACTURE THEREOF -Dry blends and pastes and manufacturing methods for batteries	FIN, <u>PCT</u> , <u>TWN</u>	2019.08.13	WO PENDING PCT PENDING (119960KM)
9	IMPROVED ELECTROLYTE FOR ELECTROCHEMICAL CELL -An electrolyte comprising a solvent comprising at least two carbonate solvents	FIN, <u>PCT</u> , <u>TWN</u>	2020.06.26	PCT/FI2021/050493 (139177LN)

Applied (recently), Expected to be accepted soon, Accepted, Granted

Granted Claims to Date

An electrochemical cell comprising:

- a) a cathode comprising a sodium-containing material, and an anode; and
- b) an electrolyte comprising a solvent and a sodium salt positioned between the cathode and the anode, wherein the solvent of the electrolyte comprises sulfur dioxide (SO₂) or ammonia (NH₃) and/or an organic amine.

An electrochemical cell, comprising:

- a) a cathode and a rechargeable metallic sodium anode; and
- b) a non-aqueous electrolyte which comprises an SO₂ additive and at least one electrolyte salt which participates in the anodic SEI (Solid Electrolyte Interface) formation together with the SO₂ additive positioned between the cathode and the anode.

An electrochemical cell, comprising:

- a) a cathode and a rechargeable metallic sodium anode; and
- b) an electrolyte which comprises a sufficient amount of dissolved SO₂ for a stable SEI (Solid Electrolyte Interface) formation and at least one electrolyte salt which is soluble to at least 1.2 molar concentration positioned between the cathode and anode.

An electrochemical cell comprising:

- a) a cathode and an anode ; and
- b) an electrolyte positioned between the cathode and anode comprising:
- 1. one or more nitrogen-containing solvent precursors and
- 2. at least one salt comprising a sodium cation and a boron, aluminum, phosphorus or a chlorine cored anion or a sulfonyl or sulfonate containing anion.

<u>An electrochemical cell</u> for a secondary battery or supercapacitor, wherein the electrolyte comprises a solution of NaBF₄ or NaBH₄ salt in ammonia, having approximate formulas of NaBF₄ ·2.5 NH₃ and NaBH₄ ·1.5 NH₃ respectively.

<u>An electrolyte</u> for an electrochemical battery cell comprising:

- i. a carbonate : nitrile type solvent mixture based electrolyte, wherein the electrolyte comprises at least one polymer additive; or
- ii. a dimethylcarbonate (DMC) : malononitrile (MLN) solvent mixture based electrolyte or a dimethylcarbonate (DMC) : (succinonitrile (SCN) : malononitrile (MLN)) solvent mixture based electrolyte, wherein the electrolyte further comprises an alkali salt and the electrolyte is liquid during electrochemical operation.

An electrochemical cell, wherein the active cathode material comprises partially oxidized Na₂S.

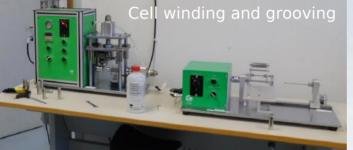
BroadBit opens new markets

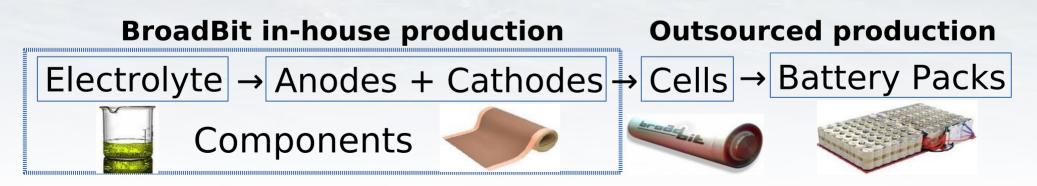
Sufficiently high energy to enable electric airplanes

Sufficiently low-cost to enable grid storage

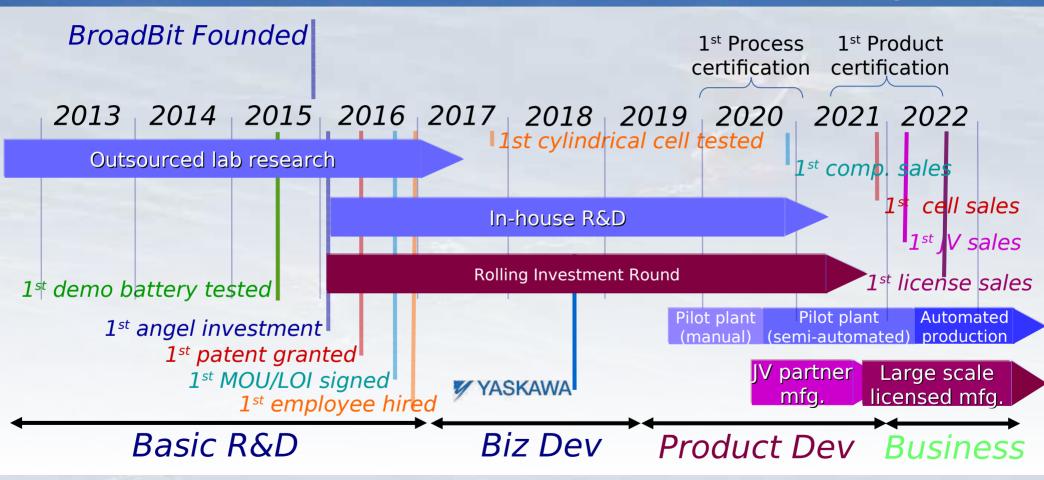
Sufficiently robust to replace starter batteries

BroadBit Production Facilities





BroadBit's market & introduction plan


- Short Term: Niche and specialty (>10%/yr growth)2021e.g. OBU, UPS, DronesTAM ~2B\$
- Mid Term: Transportation (>15%/yr growth) 2022 Bikes, Buses, Trucks, Ships, Cars, Planes TAM ~60B\$
- Long Term: Energy and power (>20%/yr growth) 2023 Grid storage, Grid stabilization TAM ~60B

SAM/SOM: ~0.1B\$/0.001B\$ (2021) → ~10B\$/1B\$ (2025)

BroadBit commercial roadmap

BroadBit seeks visionary partners

Investments to date:

2000 k€ private 2500 k€ public

Income to date:

350 k€ from samples, demos and PoCs

+ leading battery, automotive and government customers

Funding goals:Purpose:2.0 M€ Q2 2021 (>80M€ Val)Purchase

7.5 M€ H2 2021

Purchase assembly for 1st 3 niche LOIs

Scale production for 1st volume app.

